
Websites contain several different types of information. Some of it is non-

sensitive, for example the copy shown on the public pages. Some of it is

sensitive, for example customer usernames, passwords, and banking

information, or internal algorithms and private product information.

Sensitive information needs to be protected, and that is the focus of web

security. If that information fell into the wrong hands, it could be used to:

• Put companies at a competitive disadvantage by sharing their information

with competitors.

• Disable or hijack their services, again causing serious problems with their

operation.

• Put their customer's privacy at risk, making them vulnerable to profiling,

targeting, loss of data, identity theft, or even financial loss.

Modern browsers already have several features to protect users' security on

the web, but developers also need to use best practices and code carefully to

ensure that their websites are secure. Even simple bugs in your code can result

in vulnerabilities that bad actors can exploit to steal data and gain unauthorized

control over services.

This article provides an introduction to web security, including conceptual

information to help you understand website vulnerabilities and practical guides

on how to secure them.

Security and privacy are distinct yet closely related topics. It is worth knowing

the differences between the two and how they relate.

https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/


•  is the act of keeping private data and systems protected against

unauthorized access. This includes both company (internal) data and user

and partner (external) data.

•  refers to the act of giving users control over how their data is

collected, stored, and used, while also ensuring that it is not used

irresponsibly. For example, you should let your users know what data you

are collecting from them, the parties with whom it will be shared, and how

it will be used. Users must be given a chance to consent to your privacy

policy, have access to their data you store, and delete it if they choose to.

Good security is essential for good privacy. You could follow all the advice

listed in our Privacy on the web guide, but acting with integrity and having a

robust privacy policy are futile if your site is not secure and attackers can just

steal data anyway.

Web browsers follow a strict security model that enforces strong security for

content, connections between the browser and the server, and data

transportation. This section looks at the features that underpin this model.

Same-origin policy is a fundamental security mechanism of the web that

restricts how a document or a script loaded from one origin can interact with a

resource from another origin. It helps isolate potentially malicious documents,

reducing possible attack vectors.

In general, documents from one origin cannot make requests to other origins.

This makes sense because you don't want sites to be able to interfere with one

another and access unauthorized data.

However, you might want to relax this restriction in some circumstances; for

example, if you have multiple websites that interact with each other, you may

allow them to request resources from one another using fetch() . This can be

permitted using Cross-Origin Resource Sharing �CORS�, an HTTP-header-

https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Glossary/Origin
https://developer.mozilla.org/en-US/docs/Glossary/Origin
https://developer.mozilla.org/en-US/docs/Web/API/Window/fetch
https://developer.mozilla.org/en-US/docs/Web/API/Window/fetch
https://developer.mozilla.org/en-US/docs/Web/API/Window/fetch
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS


based mechanism that allows a server to indicate any origins (domain, scheme,

or port) other than its own from which a browser should permit loading

resources.

The HTTP protocol is used by web browsers and servers to communicate with

one another, request resources, provide responses (for example, providing a

requested resource or detailing why a request failed), and provide security

features for that communication.

Transport Layer Security �TLS� provides security and privacy by encrypting

data during transport over the network and is the technology behind the

HTTPS protocol. TLS is good for privacy because it stops third parties from

being able to intercept transmitted data and use it maliciously.

All browsers are moving towards requiring HTTPS by default; this is practically

the case already because you can't do much on the web without this protocol.

Related topics:

Transport layer security �TLS�

The TLS protocol is the standard for enabling two networked applications or

devices to exchange information privately and robustly. Applications that use

TLS can choose their security parameters, which can have a substantial

impact on the security and reliability of data.

HTTP Strict-Transport-Security

The Strict-Transport-Security HTTP header lets a website specify that it

may only be accessed using HTTPS.

Certificate Transparency

Certificate Transparency �CT� is an open framework designed to protect

against and monitor for certificate misissuance. Newly issued certificates are

'logged' to publicly run, often independent CT logs. These provide append-

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Glossary/HTTPS
https://developer.mozilla.org/en-US/docs/Glossary/HTTPS
https://developer.mozilla.org/en-US/docs/Web/Security/Transport_Layer_Security
https://developer.mozilla.org/en-US/docs/Web/Security/Transport_Layer_Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/Security/Certificate_Transparency
https://developer.mozilla.org/en-US/docs/Web/Security/Certificate_Transparency


only, cryptographically assured records of issued TLS certificates.

Mixed content

An HTTPS page that includes content fetched using cleartext HTTP is called

a  page. Pages like this are only partially encrypted, leaving

the unencrypted content accessible to sniffers and man-in-the-middle

attackers.

Weak signature algorithms

The strength of the hash algorithm used in signing a digital certificate is a

critical element of the security of the certificate. Some signature algorithms

are known to be weak, and should be avoided when appropriate.

Browsers control the usage of "powerful features" in different ways. These

"powerful features" include generating system notifications on a website, using

a user's webcam to get access to a media stream, manipulating the system

GPU, and using web payments. If a site could just use the APIs that control

such features without restriction, malicious developers could attempt to do the

following:

• Annoy users with unneeded notifications and other UI features.

• Turn their webcam on without warning to spy on them.

• Clog up their browser/system to create Denial of Service �DoS� attacks.

• Steal data or money.

These "powerful features" are controlled in the following ways:

• Usage of such features is permitted only in secure contexts. A secure

context is a window  or a worker  for which there is reasonable confidence

that the content has been delivered securely (via HTTPS/TLS�. In a secure

context, the potential for communication with contexts that are  secure

is limited. Secure contexts also help to prevent man-in-the-middle

https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Glossary/Plaintext
https://developer.mozilla.org/en-US/docs/Glossary/Plaintext
https://developer.mozilla.org/en-US/docs/Web/Security/Weak_Signature_Algorithm
https://developer.mozilla.org/en-US/docs/Web/Security/Weak_Signature_Algorithm
https://developer.mozilla.org/en-US/docs/Glossary/Signature/Security
https://developer.mozilla.org/en-US/docs/Glossary/Signature/Security
https://developer.mozilla.org/en-US/docs/Glossary/Digital_certificate
https://developer.mozilla.org/en-US/docs/Glossary/Digital_certificate
https://developer.mozilla.org/en-US/docs/Glossary/Denial_of_Service
https://developer.mozilla.org/en-US/docs/Glossary/Denial_of_Service
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/WorkerGlobalScope
https://developer.mozilla.org/en-US/docs/Web/API/WorkerGlobalScope
https://developer.mozilla.org/en-US/docs/Web/API/WorkerGlobalScope
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack


attackers  from accessing powerful features. To see a list of web platform

features available only in secure contexts, see Features restricted to secure

contexts.

• The usage of these features is gated behind a system of user permissions:

users have to explicitly opt-in to providing access to such features,

meaning that they can't be used automatically. User permission requests

happen automatically, and you can query the state of an API permission by

using the Permissions API.

• Several other browser features can be used only in response to a user

action such as clicking a button, meaning that they need to be invoked

from inside an appropriate event handler. This is called 

. See Features gated by user activation for more information.

There are many aspects of web security that need to be thought about on the

server- and client-side. This section focuses mainly on client-side security

considerations. You can find a useful summary of security from a server-side

perspective, which also includes descriptions of common attacks to watch out

for, at Website security (part of our Server-side website programming learning

module).

Handling data responsibly is largely concerned with cutting down on third-

party cookie usage and being careful about the data you store and share with

them. Traditionally, web developers have used cookies to store all kinds of

data, and it has been easy for attackers to exploit this tendency. As a result,

browsers have started to limit what you can do with cross-site cookies, with

the aim of removing access to them altogether in the future.

You should prepare for the removal of cross-site cookies by limiting the amount

of tracking activities you rely on and/or by implementing the persistence of the

desired information in other ways. See Transitioning from third-party cookies

and Replacing third-party cookies for more information.

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts/features_restricted_to_secure_contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts/features_restricted_to_secure_contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts/features_restricted_to_secure_contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts/features_restricted_to_secure_contexts
https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://developer.mozilla.org/en-US/docs/Web/Security/User_activation
https://developer.mozilla.org/en-US/docs/Web/Security/User_activation
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security
https://developer.mozilla.org/en-US/docs/Learn/Server-side
https://developer.mozilla.org/en-US/docs/Learn/Server-side
https://developer.mozilla.org/en-US/docs/Web/Privacy/Third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Third-party_cookies#transitioning_from_third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Third-party_cookies#transitioning_from_third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Third-party_cookies#replacing_third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Third-party_cookies#replacing_third-party_cookies


When implementing a secure solution that involves data collection, particularly

if the data is sensitive such as log-in credentials, it makes sense to use a

reputable solution. For example, any respectable server-side framework will

have built-in features to protect against common vulnerabilities. You could also

consider using a specialized product for your purpose, for example an identity

provider solution or a secure online survey provider.

If you want to roll your own solution for collecting user data, make sure you

understand all aspects and requirements. Hire an experienced server-side

developer and/or security engineer to implement the system, and ensure it is

tested thoroughly. Use multi-factor authentication �MFA� to provide better

protection. Consider using a dedicated API such as Web Authentication or

Federated Credential Management to streamline the client-side of the app.

Here are some other tips for providing secure logins:

• When collecting user login information, enforce strong passwords so that

your user's account details cannot be easily guessed. Weak passwords are

one of the main causes of security breaches. In addition, encourage your

users to use a password manager so that they can use more complex

passwords, don't need to worry about remembering them, and won't create

a security risk by writing them down. See also our article on Insecure

passwords.

• You should also educate your users about . Phishing is the act of

sending a message to a user (for example, an email or an SMS� containing

a link to a site that looks like a site they use every day but isn't. The link is

accompanied by a message designed to trick users into entering their

username and password on the site so it can be stolen and then used by

an attacker for malicious purposes.

 Some phishing sites can be very sophisticated and hard to

distinguish from a real website. You should therefore educate your

https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developer.mozilla.org/en-US/docs/Web/API/FedCM_API
https://developer.mozilla.org/en-US/docs/Web/API/FedCM_API
https://developer.mozilla.org/en-US/docs/Web/Security/Insecure_passwords
https://developer.mozilla.org/en-US/docs/Web/Security/Insecure_passwords
https://developer.mozilla.org/en-US/docs/Web/Security/Insecure_passwords
https://developer.mozilla.org/en-US/docs/Web/Security/Insecure_passwords


• Protect against brute force attacks on login pages with rate limiting,

account lockouts after a certain number of unsuccessful attempts, and

CAPTCHA challenges .

• Manage user login sessions with unique session IDs , and automatically

log out users after periods of inactivity.

As a general rule, you shouldn't include sensitive data in URL query strings

because if a third party intercepts the URL (for example, via the Referer  HTTP

header), they could steal that information. Even more serious is the fact that

these URLs can be indexed by public web crawlers, HTTP proxies, and

archiving tools such as the internet archive , meaning that your sensitive data

could persist on publicly accessible resources.

Use POST  requests rather than GET  requests to avoid these issues. Our article

Referer header policy: Privacy and security concerns describes in more detail

the privacy and security risks associated with the Referer  header, and offers

advice on mitigating those risks.

Consider using web platform features like Content Security Policy �CSP� and

users to not trust random links in emails and SMS messages. If

they receive a message along the lines of "Urgent, you need to log

in now to resolve an issue", they should go to the site directly in a

new tab and try logging in directly rather than clicking the link in

the message. Or they could phone or email you to discuss the

message they received.

 Steering away from transmitting sensitive data in URLs via GET

requests can also help protect against cross-site request forgery and

replay attacks .

https://developer.mozilla.org/en-US/docs/Glossary/Rate_limit
https://developer.mozilla.org/en-US/docs/Glossary/Rate_limit
https://en.wikipedia.org/wiki/CAPTCHA
https://en.wikipedia.org/wiki/CAPTCHA
https://en.wikipedia.org/wiki/CAPTCHA
https://en.wikipedia.org/wiki/Session_ID
https://en.wikipedia.org/wiki/Session_ID
https://en.wikipedia.org/wiki/Session_ID
https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url
https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url
https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://web.archive.org/
https://web.archive.org/
https://web.archive.org/
https://developer.mozilla.org/en-US/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/en-US/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Glossary/CSRF
https://developer.mozilla.org/en-US/docs/Glossary/CSRF
https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Replay_attack


Permissions Policy to enforce a set of feature and resource usage rules on your

website that make it harder to introduce vulnerabilities.

CSP allows you to add a layer of security by, for example, allowing images or

scripts to be loaded only from specific trusted origins. This helps to detect and

mitigate certain types of attacks, including Cross-Site Scripting �XSS� and data

injection attacks. These attacks involve a range of malicious activities, including

data theft, site defacement, and distribution of malware.

Permissions policy works in a similar way, except that it is more concerned with

allowing or blocking access to specific "powerful features" (as mentioned

earlier).

Following on from the previous section, when you allow feature and resource

usage on your site, you should try to ensure that resources have not been

tampered with.

Related topics:

Subresource integrity

 �SRI� is a security feature that enables browsers to

verify that resources they fetch (for example, from a CDN� are delivered

without unexpected manipulation. It works by allowing you to provide a

cryptographic hash that a fetched resource must match.

HTTP Access-Control-Allow-Origin

 Such policies are very useful to help keep sites secure,

especially when you are using a lot of third-party code on your site.

However, keep in mind that if you block usage of a feature that a third-

party script relies on to work, you may end up breaking your site's

functionality.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Permissions_Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Permissions_Policy
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Glossary/CDN
https://developer.mozilla.org/en-US/docs/Glossary/CDN
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin


The Access-Control-Allow-Origin  response header indicates whether the

response can be shared with requesting code from the given origin.

HTTP X�Content-Type-Options

The X-Content-Type-Options  response header is a marker used by the

server to indicate that the MIME types advertised in the Content-Type

headers should not be changed and must be followed. This header is a way

to opt out of MIME type sniffing, or, in other words, to specify that the MIME

types are deliberately configured.

As a general rule, don't trust anything that users enter into forms. Filling out

forms online is complicated and tedious, and it is easy for users to enter

incorrect data or data in the wrong format. In addition, malicious folks are

skilled in the art of entering specific strings of executable code into form fields

(for example, SQL or JavaScript). If you're not careful about handling such

inputs, they could either execute harmful code on your site or delete your

databases. See SQL injection for a good example of how this could happen.

To protect against this, you should thoroughly sanitize data entered into your

forms:

• You should implement client-side validation to inform users when they have

entered data in the wrong format. You can do this using built-in HTML form

validation features, or you can write your own validation code. See Client-

side form validation for more information.

• You should use output encoding when displaying user input in an

application UI to safely display data exactly as a user typed it in and avoid

it being executed as code. See Output encoding  for more information.

You can't rely on client-side validation alone for security — it should be

combined with server-side validation. Client-side validation enhances the user

experience by providing instant validation feedback without having to wait for a

round trip to the server. However, client-side validation is easy for a malicious

https://developer.mozilla.org/en-US/docs/Glossary/Origin
https://developer.mozilla.org/en-US/docs/Glossary/Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types#mime_sniffing
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types#mime_sniffing
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security#sql_injection
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security#sql_injection
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding


party to bypass (for example, by turning off JavaScript in the browser to

bypass JavaScript-based validation).

Any reputable server-side framework will provide functionality for validating

form submissions. In addition, a common best practice is to escape any special

characters that form part of executable syntax, thereby making any entered

code no longer executable and treated as plain text.

In a clickjacking attack, a user is fooled into clicking a UI element that performs

an action different from what the user expects, often resulting in the user's

confidential information being passed to a malicious third party. This risk is

inherent in embedded third-party content, so make sure you trust what is being

embedded into your site. Additionally, be aware that clickjacking can be

combined with phishing techniques. You can read about phishing in the

previous section Protect user identity and manage logins.

The following features can help guard against clickjacking:

HTTP X�Frame-Options

The X-Frame-Options HTTP response header can be used to indicate

whether a browser should be allowed to render a page in a <frame> ,

<iframe> , <embed>  or <object> . Sites can use this to avoid clickjacking

attacks, by ensuring that their content is not embedded into other sites.

CSP� frame-ancestors

The HTTP Content-Security-Policy  �CSP� frame-ancestors  directive

specifies valid parents that may embed a page using <frame> , <iframe> ,

<object> , or <embed> .

To get comprehensive instructions for implementing security features

effectively on websites and to ensure you're following best practices, see our

set of Practical security implementation guides.

https://developer.mozilla.org/en-US/docs/Glossary/Clickjacking
https://developer.mozilla.org/en-US/docs/Glossary/Clickjacking
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/frame
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/frame
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/frame
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object
https://developer.mozilla.org/en-US/docs/Glossary/Clickjacking
https://developer.mozilla.org/en-US/docs/Glossary/Clickjacking
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/frame
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/frame
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/frame
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/Security/Practical_implementation_guides
https://developer.mozilla.org/en-US/docs/Web/Security/Practical_implementation_guides


Some of these guides are directly related to the HTTP Observatory tool.

Observatory performs security audits on a website and provides a grade and

score along with recommendations for fixing the security issues it finds. These

guides explain how to resolve issues surfaced by the MDN Observatory tests:

the tool links to the relevant guide for each issue, helping guide you towards an

effective resolution. Interestingly, Mozilla's internal developer teams use this

guidance when implementing websites to ensure that security best practices

are applied.

• Privacy on the web

• Learn: Website security

• Mozilla Security Blog

• OWASP Cheat Sheet series

Was this page helpful to you?

Learn how to contribute.

This page was last modified on Aug 30, 2024 by MDN contributors.

https://developer.mozilla.org/en-US/observatory
https://developer.mozilla.org/en-US/observatory
https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security
https://blog.mozilla.org/security/
https://blog.mozilla.org/security/
https://blog.mozilla.org/security/
https://cheatsheetseries.owasp.org/index.html
https://cheatsheetseries.owasp.org/index.html
https://cheatsheetseries.owasp.org/index.html
https://github.com/mdn/content/blob/main/CONTRIBUTING.md
https://github.com/mdn/content/blob/main/CONTRIBUTING.md
https://developer.mozilla.org/en-US/docs/Web/Security/contributors.txt
https://developer.mozilla.org/en-US/docs/Web/Security/contributors.txt

